Banner Shadow

Introduction

Complete Data Fusion (CDF) is a statistical method designed to optimally combine multiple independent atmospheric profile retrievals into a single, consistent, and information-rich product. It is particularly suited for satellite remote sensing applications, where different instruments provide complementary measurements of the same geophysical quantity (e.g., ozone, temperature, trace gases).

Within the EMM (Earth Moon Mars) research infrastructure, the CDF enables advanced scientific studies based on real atmospheric data. EMM provides the necessary computational resources, specialized software tools, and expert knowledge to support the application of CDF to  optimized and multi-instrument satellite observations. 

Basic Concepts

Possible CDF usages

Il CNR svolge un ruolo attivo e trasversale, partecipando attraverso sei Istituti (IFAC, IBE, INO, IEIIT, IAC, ISAC) afferenti a quattro Dipartimenti (DIITET, DISBA, DSFTM, DSSTTA). Oltre alla condivisione delle attività di coordinamento tecnico-scientifico e gestionale, il CNR è direttamente responsabile di specifiche linee progettuali, strategiche per l’avanzamento delle tecnologie e infrastrutture a supporto dell’esplorazione del sistema Terra. In particolare, il suo contributo si concentra su:

  • Sviluppo di prototipi e studi di fattibilità per strumentazione destinata alla misura dell’atmosfera e della superficie terrestre dalla Luna;
  • Partecipazione alla realizzazione del sistema di antenna per la ricezione di segnali provenienti dallo spazio profondo;
  • Progettazione e implementazione di un’infrastruttura hardware e software in grado di coprire l’intero ciclo operativo: dalla raccolta ed elaborazione dei dati osservativi per calibrazione e validazione di misure satellitari, alla generazione di modelli di trasferimento radiativo (diretti e inversi), algoritmi di fusione e retrieval sinergico, fino all’assimilazione dati e alla modellistica meteorologica e climatica.

Requirements for a Dedicated Software Infrastructure

The characteristics of a hardware infrastructure dedicated to the CDF, largely depend on application types and on the type of data to which the CDF applies. At the present development stage, it is very important both to list a first set of basic considerations on the implementation of the fusion, and to underline which information it is important to know for each type of data, to be able to collect them during the testing phase of the CDF on new datasets.

  • The maximum number of products to which the CDF can be applied depends on the application context:
    1. if the CDF is used to collect the information embedded in different measurements of the same portion of atmosphere by one or several instruments, the maximum number of products to be fused in one is of the order of tenth or hundreds depending on the spatial-temporal coincidence criteria;
    2. if the CDF is used to perform large spatial/temporal averages free from the a priori bias (Zoppetti et al. 2021) the maximum number of products to be fused at once can be of the order of hundreds of thousands or millions.
  • The computational costs (computation times and memory occupation) of the application of the CDF depend linearly on the number of fused products and for each of them in a linear to quadratic way on the number of elements of the state vector.
  • The single fusion of 10-100 atmospheric products having state vector size of 40-50 elements can be performed in thousandths/hundredths of a second in a standard laptop with poor code optimization using interpreted Python3 code.
  • In general, the chance to use the CDF for product synergism depends on the spatial and temporal distribution of each product. It will be important to collect all the pertinent information about all the datasets that pass the completeness tests.
Compliance is not enough to thwart cyber attacks
October 5, 2015
Phasellus accumsan nibh odio, a tincidunt nunc condimentum non. Maecenas fringilla consectetur luctus. Nulla ut iaculis quam, pharetra porta libero. Phasellus et tristique orci, nec malesua...
Smart luggage firms close because of airline battery rules
October 5, 2015
Phasellus accumsan nibh odio, a tincidunt nunc condimentum non. Maecenas fringilla consectetur luctus. Nulla ut iaculis quam, pharetra porta libero. Phasellus et tristique orci, nec malesuad...
Cambridge Analytica starts bankruptcy proceedings in US
October 5, 2015
Nullam et justo tortor. Morbi quis urna enim. Vestibulum nec mattis diam. Ut tincidunt id odio efficitur ultrices. Maecenas congue, ex a blandit pellentesque, mi metus convallis mi, aliquet ...
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.